Drawing Outer 1-planar Graphs with Few Slopes

نویسندگان

  • Emilio Di Giacomo
  • Giuseppe Liotta
  • Fabrizio Montecchiani
چکیده

A graph is outer 1-planar if it admits a drawing where each vertex is on the outer face and each edge is crossed by at most another edge. Outer 1-planar graphs are a superclass of the outerplanar graphs and a subclass of the planar partial 3-trees. We show that an outer 1-planar graph G of bounded degree ∆ admits an outer 1-planar straight-line drawing that uses O(∆) different slopes, which generalizes a previous result by Knauer et al. about the outerplanar slope number of outerplanar graphs [18]. We also show that O(∆) slopes suffice to construct a crossing-free straight-line drawing of G; the best known upper bound on the planar slope number of planar partial 3-trees of bounded degree ∆ is O(∆) as proved by Jeĺınek et al. [16]. Submitted: October 2014 Reviewed: February 2015 Revised: March 2015 Reviewed: August 2015 Revised: September 2015 Accepted: October 2015 Final: October 2015 Published: November 2015 Article type: Regular paper Communicated by: C. Duncan and A. Symvonis Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and Networked DAta”, prot. 2012C4E3KT 001. E-mail addresses: [email protected] (Emilio Di Giacomo) [email protected] (Giuseppe Liotta) [email protected] (Fabrizio Montecchiani) 708 Di Giacomo et al. Drawing Outer 1-planar Graphs with Few Slopes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Really Straight Graph Drawings

We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes, and that every cubic 3-connected plane graph has a plane drawing with ...

متن کامل

m at h . C O ] 1 9 Ju n 20 06 Drawings of Planar Graphs with Few Slopes and Segments ∗

We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5 2 n segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane ...

متن کامل

ar X iv : c s / 04 05 11 2 v 1 [ cs . D M ] 3 1 M ay 2 00 4 Really Straight Graph Drawings ∗

We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing ...

متن کامل

ar X iv : c s . D M / 0 40 51 12 v 1 3 1 M ay 2 00 4 Really Straight Graph Drawings ∗

We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing ...

متن کامل

Drawings of planar graphs with few slopes and segments

We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 52n segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014